Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Magnes Res ; 36(1): 1-13, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37605600

RESUMEN

Oxidative stress, arising from disrupted balance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant defences, has been implicated in the pathogenesis of stress-related disorders. There is a growing body of evidence that supports the relationship between the activity of the hypothalamic-pituitary-adrenal (HPA) stress system, oxidative stress and magnesium (Mg) homeostasis. The present study aimed to explore the gap in our current understanding of antigenotoxic and protective effects of Mg supplementation against excessive ROS production in male rats during chronic treatment with adrenocorticotropic hormone (ACTH). Our findings show that exposure to exogenous ACTH (10 µg/day, s.c., for 21 days), as one of the key mediators of the HPA axis and stress response, produced an increase in superoxide anion levels and a decrease in superoxide dismutase activity in plasma. We observed that Mg supplementation, starting seven days prior to ACTH treatment and lasting 28 days (300 mg/L of drinking water, per os), abolished these effects in experimental animals. Moreover, our study reveals that ACTH increased the susceptibility of peripheral blood lymphocytes to ex vivo H2O2-induced total and high-level oxidative DNA damage, while Mg completely reversed these effects. Collectively, these results highlight the promising role of Mg in stress-related conditions accompanied by increased oxidative stress in animals and support further investigation using human dietary trials.


Asunto(s)
Peróxido de Hidrógeno , Magnesio , Humanos , Animales , Ratas , Masculino , Magnesio/farmacología , Especies Reactivas de Oxígeno , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Estrés Oxidativo , Hormona Adrenocorticotrópica/farmacología , Daño del ADN , Trastornos Psicofisiológicos
2.
J Exp Zool B Mol Dev Evol ; 340(6): 403-413, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37272301

RESUMEN

Serially homologous structures may have complex patterns of regionalization and morphological integration, influenced by developmental Hox gene expression and functional constraints. The vertebral column, consisting of a number of repeated, developmentally constrained, and highly integrated units-vertebrae-is such a complex serially homologous structure. Functional diversification increases regionalization and modularity of the vertebral column, particularly in mammals. For salamanders, three concepts of regionalization of the vertebral column have been proposed, recognizing one, two, or three presacral regions. Using three-dimensional geometric morphometrics on vertebra models acquired with microcomputerized tomography scanning, we explored the covariation of vertebrae in four closely related taxa of small-bodied newts in the genus Lissotriton. The data were analyzed by segmented linear regression to explore patterns of vertebral regionalization and by a two-block partial least squares method to test for morphological integration. All taxa show a morphological shift posterior to the fifth trunk vertebra, which corresponds to the two-region concept. However, morphological integration is found to be strongest in the mid-trunk. Taken jointly, these results indicate a highly integrated presacral vertebral column with a subtle two-region differentiation. The results are discussed in relation to specific functional requirements, developmental and phylogenetic constraints, and specific requirements posed by a biphasic life cycle and different locomotor modes (swimming vs. walking). Further research should be conducted on different ontogenetic stages and closely related but ecologically differentiated species.


Asunto(s)
Mamíferos , Columna Vertebral , Animales , Filogenia , Columna Vertebral/anatomía & histología , Salamandridae , Genes Homeobox , Evolución Biológica
3.
Ann Anat ; 249: 152097, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37011824

RESUMEN

BACKGROUND: Amphibian skin has been studied for many decades, especially the metamorphic changes in the skin of frogs. Less attention has been paid to salamander skin. Here, we describe changes in the skin structure during postembryonic development in a salamandrid species, the Balkan crested newt Triturus ivanbureschi. METHOD: Using traditional histological techniques we examined the skin in the trunk region of three premetamorphic larval stages (hatchling, mid larval and late larval) and two postmetamorphic stages (juvenile, just after metamorphosis, and adult). RESULTS: In larval stages, skin consists only of the epidermis, which gradually develops from the single epithelial cell layer in hatchlings, to a stratified epidermis with gland nests and characteristic Leydig cells at the late larval stage. During metamorphosis, Leydig cells disappear, and the dermal layer develops. In postmetamorphic stages, skin is differentiated on stratified epidermis and the dermis with well-developed glands. Three types of glands were observed in the skin of the postmetamorphic stages: mucous, granular and mixed. Gland composition appears to be stage- and sex-specific, with juveniles and adult female being more similar to each other. In juveniles and adult female, there are a similar proportion of glands in both dorsal and ventral skin, whereas in adult male granular glands dominated the dorsal skin, while mixed glands dominated the ventral skin. CONCLUSION: Our results provide a baseline for future comparative research of skin anatomy in salamanders.


Asunto(s)
Triturus , Urodelos , Animales , Masculino , Femenino , Triturus/anatomía & histología , Salamandridae , Piel/anatomía & histología , Epidermis , Larva
4.
J Therm Biol ; 112: 103474, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36796919

RESUMEN

Ectotherms are particularly sensitive to global warming due to their limited capacity to thermoregulate, which can impact their performance and fitness. From a physiological standpoint, higher temperatures often enhance biological processes that can induce the production of reactive oxygen species and result in a state of cellular oxidative stress. Temperature alters interspecific interactions, including species hybridization. Hybridization under different thermal conditions could amplify parental (genetic) incompatibilities, thus affecting a hybrid's development and distribution. Understanding the impact of global warming on the physiology of hybrids and particularly their oxidative status could help in predicting future scenarios in ecosystems and in hybrids. In the present study, we investigated the effect of water temperature on the development, growth and oxidative stress of two crested newt species and their reciprocal hybrids. Larvae of Triturus macedonicus and T. ivanbureschi, and their T. macedonicus-mothered and T. ivanbureschi-mothered hybrids were exposed for 30 days to temperatures of 19°C and 24°C. Under the higher temperature, the hybrids experienced increases in both growth and developmental rates, while parental species exhibited accelerated growth (T. macedonicus) or development (T. ivanbureschi). Warm conditions also had different effects on the oxidative status of hybrid and parental species. Parental species had enhanced antioxidant responses (catalase, glutathione peroxidase, glutathione S-transferase and SH groups), which allowed them to alleviate temperature-induced stress (revealed by the absence of oxidative damage). However, warming induced an antioxidant response in the hybrids, including oxidative damage in the form of lipid peroxidation. These findings point to a greater disruption of redox regulation and metabolic machinery in hybrid newts, which can be interpreted as the cost of hybridization that is likely linked to parental incompatibilities expressed under a higher temperature. Our study aims to improve mechanistic understanding of the resilience and distribution of hybrid species that cope with climate-driven changes.


Asunto(s)
Antioxidantes , Ecosistema , Animales , Antioxidantes/metabolismo , Temperatura , Estrés Oxidativo , Triturus/metabolismo
5.
Anat Rec (Hoboken) ; 306(8): 1981-1989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36753449

RESUMEN

Micro-computed tomography is a powerful tool toward the detailed reconstruction of internal and external morphology, in particular for ossified and other dense tissues. Here, we document and compare the level of calcification in the skin of the head and the parotoids (the external skin glands) in males and females of common and spined toads, Bufo bufo and B. spinosus. In some anurans, including Bufo species, a specific acellular calcified tissue layer within the dermis has been documented (the Eberth-Katschenko, or EK-layer). By a combination of micro-computed tomography and classical histology, we detected additional calcium deposits located in the dermal layer stratum spongiosum, positioned above the EK-layer. We showed that the level of calcification and the presence of additional calcium deposits are size and sex related, increasing in the order B. bufo males, B. spinosus males, B. bufo females to B. spinosus females. The last of these groups is the least variable. Bufo spinosus females have dense calcium deposits in the parotoids and the dorsal and ventral skin. Three-dimensional volume renderings and cross-sectional slices obtained by micro-CT scanning indicate that this approach is a promising technique for further studies on bufonid skin anatomy and geographic variation in skin calcification.


Asunto(s)
Bufo bufo , Calcio , Masculino , Animales , Femenino , Microtomografía por Rayos X , Estudios Transversales , Bufonidae
6.
Animals (Basel) ; 12(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35203151

RESUMEN

Two large-bodied newt species, Triturus ivanbureschi and T. macedonicus, hybridize in nature across the Balkan Peninsula. Consequences of hybridization upon secondary contact of two species include species displacement and asymmetrical introgression of T. ivanbureschi mtDNA. We set an experimental reciprocal cross of parental species and obtained two genotypes of F1 hybrids (with T. ivanbureschi or T. macedonicus mtDNA). When hybrids attained sexual maturity, they were engaged in mutual crossings and backcrossing with parental species. We followed reproductive traits over two successive years. Our main aim was to explore the reproductive success of F1 females carrying different parental mtDNA. Additionally, we tested for differences in reproductive success within female genotypes depending on the crossing with various male genotypes (hybrids or parental species). Both female genotypes had similar oviposition periods, number of laid eggs and hatched larvae but different body and egg sizes. Overall reproductive success (percentage of egg-laying females and viability of embryos) was similar for both genotypes. The type of crossing led to some differences in reproductive success within female genotypes. The obtained results suggest that processes that led to exclusion of T. macedonicus mtDNA in natural populations may be related to the survival at postembryonic stages of F2 generation or reproductive barriers that emerged in subsequent hybrid generations.

7.
J Anat ; 240(4): 639-646, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34761388

RESUMEN

The salamander vertebral column is largely undifferentiated with a series of more or less uniform rib-bearing presacral vertebrae traditionally designated as the trunk region. We explored regionalization of the salamander trunk in seven species and two subspecies of the salamander genus Lissotriton by the combination of microcomputed tomography scanning and geometric morphometrics. The detailed information on trunk vertebral shape was subjected to a multidimensional cluster analysis and a phenotypic trajectory analysis. With these complementary approaches, we observed a clear morphological regionalization. Clustering analysis showed that the anterior trunk vertebrae (T1 and T2) have distinct morphologies that are shared by all taxa, whereas the subsequent, more posterior vertebrae show significant disparity between species. The phenotypic trajectory analysis revealed that all taxa share a common pattern and amount of shape change along the trunk region. Altogether, our results support the hypothesis of a conserved anterior-posterior developmental patterning which can be associated with different functional demands, reflecting (sub)species' and, possibly, regional ecological divergences within species.


Asunto(s)
Columna Vertebral , Torso , Animales , Evolución Biológica , Salamandridae , Columna Vertebral/anatomía & histología , Columna Vertebral/diagnóstico por imagen , Microtomografía por Rayos X
8.
Evolution ; 73(6): 1253-1264, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990882

RESUMEN

In vertebrates with complex, biphasic, life cycles, larvae have a distinct morphology and ecological preferences compared to metamorphosed juveniles and adults. In amphibians, abrupt and rapid metamorphic changes transform aquatic larvae to terrestrial juveniles. The main aim of this study is to test whether, relative to larval stages, metamorphosis (1) resets the pattern of variation between ontogenetic stages and species, (2) constrains intraspecific morphological variability, and (3) similar to the "hour-glass" model reduces morphological disparity. We explore postembryonic ontogenetic trajectories of head shape (from hatching to completed metamorphosis) of two well-defined, morphologically distinct Triturus newts species and their F1 hybrids. Variation in head shape is quantified and compared on two levels: dynamic (across ontogenetic stages) and static (at a particular stage). Our results show that the ontogenetic trajectories diverge early during development and continue to diverge throughout larval stages and metamorphosis. The high within-group variance and the largest disparity level (between-group variance) characterize the metamorphosed stage. Hence, our results indicate that metamorphosis does not canalize head shape variation generated during larval development and that metamorphosed phenotype is not more constrained relative to larval ones. Therefore, metamorphosis cannot be regarded as a developmental constraint, at least not for salamander head shape.


Asunto(s)
Evolución Biológica , Larva/crecimiento & desarrollo , Metamorfosis Biológica , Cráneo/anatomía & histología , Triturus/crecimiento & desarrollo , Animales , Cabeza/anatomía & histología , Hibridación Genética , Larva/anatomía & histología , Cráneo/crecimiento & desarrollo , Especificidad de la Especie , Triturus/anatomía & histología
9.
Arthropod Struct Dev ; 49: 1-9, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30710632

RESUMEN

We investigated morphometric variation in size and shape of the head, pronotum, and abdomen between the taxa and sexes of two ground beetles, Carabus coriaceus cerisyi Dejean, 1826 and C. kollari praecellens Palliardi, 1825. These two taxa differ in overall size, and both of them are characterized by significant sexual size dimorphism. In many taxa, allometry, the relationship between changes in shape and changes in size, can be a major component of intra- and interspecific variation in body shape. In the present study, we applied landmark-based geometric morphometrics to explore allometric and non-allometric components of shape variation between the taxa and more importantly between sexes within the taxa. We were able to show that the differences of shape between the taxa cannot be explained by allometric changes, as allometry explains only a small amount of total shape variation between the taxa, which was expected due to the fact that the taxa belong to separate subgenera. Between the sexes, on the other hand, allometry contributes largely to the variation, particularly in abdomen shape. However, the differences of head and pronotum shape between the sexes cannot be entirely explained in terms of allometric scaling. Our results indicate that allometry contributes largely to differences of body shape between the sexes, while differences between the taxa are influenced by other factors and processes.


Asunto(s)
Escarabajos/anatomía & histología , Animales , Tamaño Corporal , Femenino , Masculino , Caracteres Sexuales
10.
PeerJ ; 6: e5317, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065885

RESUMEN

Relationships between phylogenetic relatedness, hybrid zone spatial structure, the amount of interspecific gene flow and population demography were investigated, with the newt genus Triturus as a model system. In earlier work, a bimodal hybrid zone of two distantly related species combined low interspecific gene flow with hybrid sterility and heterosis was documented. Apart from that, a suite of unimodal hybrid zones in closely related Triturus showed more or less extensive introgressive hybridization with no evidence for heterosis. We here report on population demography and interspecific gene flow in two Triturus species (T. macedonicus and T. ivanbureschi in Serbia). These are two that are moderately related, engage in a heterogeneous uni-/bimodal hybrid zone and hence represent an intermediate situation. This study used 13 diagnostic nuclear genetic markers in a population at the species contact zone. This showed that all individuals were hybrids, with no parentals detected. Age, size and longevity and the estimated growth curves are not exceeding that of the parental species, so that we conclude the absence of heterosis in T. macedonicus-T. ivanbureschi. Observations across the genus support the hypothesis that fertile hybrids allocate resources to reproduction and infertile hybrids allocate resources to growth. Several Triturus species hybrid zones not yet studied allow the testing of this hypothesis.

11.
J Anat ; 232(3): 359-370, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29239487

RESUMEN

We carried out a comparative morphometric analysis of 56 species of salamandrid salamanders, representing 19 out of 21 extant genera, with the aim of uncovering the major patterns of skull shape diversification, and revealing possible trends and directions of evolutionary change. To do this we used micro-computed tomography scanning and three-dimensional geometric morphometrics, along with a well-resolved molecular phylogeny. We found that allometry explains a relatively small amount of shape variation across taxa. Congeneric species of salamandrid salamanders are more similar to each other and cluster together producing distinct groups in morphospace. We detected a strong phylogenetic signal and little homoplasy. The most pronounced changes in the skull shape are related to the changes of the frontosquamosal arch, a unique feature of the cranial skeleton for the family Salamandridae, which is formed by processes arising from the frontal and squamosal bones that arch over the orbits. By mapping character states over the phylogeny, we found that a reduction of the frontosquamosal arch occurs independently in three lineages of the subfamily Pleurodelinae. This reduction can probably be attributed to changes in the development and ossification rates of the frontosquamosal arch. In general, our results are similar to those obtained for caecilian amphibians, with an early expansion into the available morphospace and a complex history characterizing evolution of skull shape in both groups. To evaluate the specificity of the inferred evolutionary trajectories and Caudata-wide trends in the diversity of skull morphology, information from additional groups of tailed amphibians is needed.


Asunto(s)
Evolución Biológica , Salamandridae/anatomía & histología , Cráneo/anatomía & histología , Animales , Filogenia
12.
Zoology (Jena) ; 126: 164-171, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29113765

RESUMEN

Vertebral morphology, development, and evolution have been investigated for many decades, especially in the recent evo-devo era. Nevertheless, comparative data on development and ossification modes within the major tetrapod groups are scarce and frequently suffer from the use of a simplistic approach, resulting in simplistic generalizations about the formation of tetrapod vertebrae. Here, we describe the development and ossification of trunk vertebrae in Triturus ivanbureschi (Salamandridae, Caudata) and compare the results with published data on other related taxa. In so doing, we focus on the modes of ossification and development of the centrum and neural arches by analysing three developmental stages defined by the degree of limb development: stages 47, 52, and 62 according to Glücksohn (1932). Our examination of histological sections through trunk vertebrae enabled us to identify three modes of ossification within single trunk vertebrae: (i) perichordal (direct ossification of the connective tissue surrounding the notochord); (ii) perichondrial (direct ossification of the perichondrium, consisting of cartilage-covering connective tissue), and (iii) endochondral (ossification within the preformed cartilage template). We also noted the presence of intravertebral or notochordal cartilage. Although our results indicate that this cartilage develops within the notochord surrounded by the continuous notochordal sheath, more detailed further studies could shed light on its origin and development.


Asunto(s)
Osteogénesis/fisiología , Salamandridae/crecimiento & desarrollo , Columna Vertebral/crecimiento & desarrollo , Animales , Salamandridae/anatomía & histología , Columna Vertebral/anatomía & histología
13.
J Exp Zool B Mol Dev Evol ; 328(8): 737-748, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28664626

RESUMEN

Tetrapod limbs are serially homologous structures that represent a particularly interesting model for studies on morphological integration, i.e. the tendency of developmental systems to produce correlated variation. In newts, limbs develop at an early larval stage and grow continuously, including after the habitat transition from water to land following metamorphosis. However, aquatic and terrestrial environments impose different constraints and locomotor modes that could affect patterns of morphological integration and evolvability. We hypothesize that this would be the case for alternative heterochronic morphs in newts, i.e. aquatic paedomorphs that keep gills at the adult stage and adult metamorphs that are able to disperse on land. To this end, we analyzed patterns and strengths of correlations between homologous skeletal elements of the fore- and hindlimbs as well as among skeletal elements within limbs in both phenotypes in the alpine newt, Ichthyosaura alpestris. Our results showed that metamorphs and paedomorphs had similar, general patterns of limb integration. Partial correlations between homologous limb elements and within limb elements were higher in paedomorphs when compared to metamorphs. A decrease in partial correlation between homologous limb elements in metamorphs is accompanied with a higher evolvability of the terrestrial morph. All these results indicate that environmental demands shaped the patterns of morphological integration of alpine newt limbs and that the observed diversity in correlation structure could be related to a qualitative difference in the modes of locomotion between the morphs.


Asunto(s)
Miembro Anterior/crecimiento & desarrollo , Miembro Posterior/crecimiento & desarrollo , Estadios del Ciclo de Vida , Salamandridae/anatomía & histología , Salamandridae/crecimiento & desarrollo , Distribución Animal , Animales , Evolución Biológica , Ambiente , Femenino , Grecia , Masculino , Montenegro
14.
J Morphol ; 278(11): 1577-1585, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28710876

RESUMEN

Body elongation in vertebrates can be achieved by lengthening of the vertebrae or by an increase in their number. In salamanders, longer bodies are mostly associated with greater numbers of vertebrae in the trunk or tail region. However, studies on the relative contribution of the length of single vertebra to body elongation are lacking. In this study, we focus on evolutionary and ontogenetic changes in differentiation of the trunk vertebrae and the relative contribution of individual vertebrae to trunk lengthening in Triturus newts, a monophyletic group of salamanders that shows remarkable disparity in body shape. We compared juveniles and adults of the most elongated T. dobrogicus, which has 17 trunk vertebrae, with juveniles and adults of two closely related species (T. ivanbureschi and T. anatolicus belonging to the T. karelinii species complex) representing a stout and robust morphotype with thirteen trunk vertebrae. We show that trunk vertebrae are uniform in size at the juvenile stage of both analyzed morphotypes. In adults, the trunk vertebrae of the elongated T. dobrogicus are largely uniform, while in those of T. anatolicus, the first two vertebrae differ from the remaining trunk vertebrae. There was no difference in the relative contribution of individual vertebrae to body lengthening between species or stages. We conclude that body elongation in Triturus newts is achieved by increasing the number of vertebrae but not their length.


Asunto(s)
Huesos/anatomía & histología , Torso/anatomía & histología , Triturus/anatomía & histología , Animales , Masculino , Análisis de Regresión , Columna Vertebral/anatomía & histología
15.
Zoology (Jena) ; 119(5): 439-446, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27267146

RESUMEN

Body elongation in vertebrates is often related to a lengthening of the vertebrae and an increase in their number. Changes in the number and shape of vertebrae are not necessarily linked. In tailed amphibians, a change in body shape is mostly associated with an increase in the number of trunk and tail vertebrae. Body elongation without a numerical change of vertebrae is rare. In Triturus aquatic salamanders body elongation is achieved by trunk elongation through an increase in the number of trunk vertebrae. We used computed microtomography and three-dimensional geometric morphometrics to document the size, shape and number of trunk vertebrae in seven Triturus species. The data suggest that body elongation has occurred more frequently than body shortening, possibly related to a more aquatic versus a more terrestrial locomotor style. Our results show that body elongation is achieved through an increase in the number of trunk vertebrae, and that interspecific differences in vertebral shape are correlated with this pattern of elongation. More gracile trunk vertebrae were found in the more elongated species. The shape differences are such that single trunk vertebrae can be used for the identification of species with a possible application in the identification of subfossil and fossil material.


Asunto(s)
Columna Vertebral/anatomía & histología , Triturus/anatomía & histología , Animales , Tipificación del Cuerpo , Tamaño Corporal , Filogenia , Triturus/genética
16.
PeerJ ; 3: e1397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26587355

RESUMEN

We explored intraspecific variation in vertebral formulae, more specifically the variation in the number of thoracic vertebrae and frequencies of transitional sacral vertebrae in Triturus newts (Caudata: Salamandridae). Within salamandrid salamanders this monophyletic group shows the highest disparity in the number of thoracic vertebrae and considerable intraspecific variation in the number of thoracic vertebrae. Triturus species also differ in their ecological preferences, from predominantly terrestrial to largely aquatic. Following Geoffroy St. Hilaire's and Darwin's rule which states that structures with a large number of serially homologous repetitive elements are more variable than structures with smaller numbers, we hypothesized that the variation in vertebral formulae increases in more elongated species with a larger number of thoracic vertebrae. We furthermore hypothesized that the frequency of transitional vertebrae will be correlated with the variation in the number of thoracic vertebrae within the species. We also investigated potential effects of species hybridization on the vertebral formula. The proportion of individuals with a number of thoracic vertebrae different from the modal number and the range of variation in number of vertebrae significantly increased in species with a larger number of thoracic vertebrae. Contrary to our expectation, the frequencies of transitional vertebrae were not correlated with frequencies of change in the complete vertebrae number. The frequency of transitional sacral vertebra in hybrids did not significantly differ from that of the parental species. Such a pattern could be a result of selection pressure against transitional vertebrae and/or a bias towards the development of full vertebrae numbers. Although our data indicate relaxed selection for vertebral count changes in more elongated, aquatic species, more data on different selective pressures in species with different numbers of vertebrae in the two contrasting, terrestrial and aquatic environments are needed to test for causality.

17.
BMC Evol Biol ; 15: 5, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25887731

RESUMEN

BACKGROUND: Morphological divergence often increases with phylogenetic distance, thus making morphology taxonomically informative. However, transitions to asexual reproduction may complicate this relationship because asexual lineages capture and freeze parts of the phenotypic variation of the sexual populations from which they derive. Parasitoid wasps belonging to the genus Lysiphlebus Foerster (Hymenoptera: Braconidae: Aphidiinae) are composed of over 20 species that exploit over a hundred species of aphid hosts, including many important agricultural pests. Within Lysiphlebus, two genetically and morphologically well-defined species groups are recognised: the "fabarum" and the "testaceipes" groups. Yet within each group, sexual as well as asexual lineages occur, and in L. fabarum different morphs of unknown origin and status have been recognised. In this study, we selected a broad sample of specimens from the genus Lysiphlebus to explore the relationship between genetic divergence, reproductive mode and morphological variation in wing size and shape (quantified by geometric morphometrics). RESULTS: The analyses of mitochondrial and nuclear gene sequences revealed a clear separation between the "testaceipes" and "fabarum" groups of Lysiphlebus, as well as three well-defined phylogenetic lineages within the "fabarum" species group and two lineages within the "testaceipes" group. Divergence in wing shape was concordant with the deep split between the "testaceipes" and "fabarum" species groups, but within groups no clear association between genetic divergence and wing shape variation was observed. On the other hand, we found significant and consistent differences in the shape of the wing between sexual and asexual lineages, even when they were closely related. CONCLUSIONS: Mapping wing shape data onto an independently derived molecular phylogeny of Lysiphlebus revealed an association between genetic and morphological divergence only for the deepest phylogenetic split. In more recently diverged taxa, much of the variation in wing shape was explained by differences between sexual and asexual lineages, suggesting a mechanistic link between wing shape and reproductive mode in these parasitoid wasps.


Asunto(s)
Avispas/anatomía & histología , Avispas/genética , Alas de Animales/anatomía & histología , Animales , Áfidos/parasitología , Filogenia , Reproducción , Reproducción Asexuada , Avispas/fisiología
18.
Evol Dev ; 16(5): 306-17, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25124217

RESUMEN

Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately. The three species differ in skull size and shape in metamorphs and adults. The ontogenies of dorsal and ventral skull differ in the orientation but not lengths of the ontogenetic trajectories. The disparity of dorsal skull shape increases over ontogeny, but that of ventral skull shape does not. Thus, modifications of ontogenetic trajectories can, but need not, increase the disparity of shape. In species with biphasic life-cycles, when ontogenetic trajectories for one stage can be decoupled from those of another, increases and decreases in disparity are feasible, but our results show that they need not occur.


Asunto(s)
Cráneo/anatomía & histología , Triturus/anatomía & histología , Triturus/embriología , Animales , Metamorfosis Biológica
20.
Zoology (Jena) ; 115(4): 207-16, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22748667

RESUMEN

We used geometric morphometrics to explore the influence of phylogenetic and allometric constraints as well as ecology on variation in cranium shape in five species of monophyletic, morphologically similar Podarcis lizards (Podarcis erhardii, Podarcis melisellensis, Podarcis muralis, Podarcis sicula and Podarcis taurica). These species belong to different clades, they differ in their habitat preferences and can be classified into two distinct morphotypes: saxicolous and terrestrial. We found (i) no phylogenetic signal in cranium shape, (ii) diverging allometric slopes among species, and (iii) a significant effect of habitat on cranium shape. The saxicolous species (P. erhardii and P. muralis) had crania with elongated parietals, elongated cranium bases, shortened anterior parts of the dorsal cranium, reduced chambers of the jaw adductor muscles and larger subocular foramina. These cranial features are adaptations that compensate for a flattened cranium, dwelling on vertical surfaces and seeking refuge in crevices. The crania of the terrestrial species (P. melisellensis, P. sicula and P. taurica) tended to be more elongate and robust, with enlarged chambers of the jaw adductor muscle, reduced skull bases and shortened parietals. Terrestrial species exhibited more variation in cranium shape than saxicolous species. Our study suggests that shape variation in Podarcis sp. lizards is largely influenced by ecology, which likely affects species-specific patterns of static allometry.


Asunto(s)
Lagartos/anatomía & histología , Cráneo/anatomía & histología , Animales , Biometría , Ecosistema , Femenino , Lagartos/genética , Masculino , Filogenia , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...